KDT Closest Edges#

Alias: KDTree Edges

https://user-images.githubusercontent.com/14288520/196486631-373996a4-c49a-48f8-a03b-71919988efd8.png https://user-images.githubusercontent.com/14288520/196487746-16ac4469-f108-4e28-b8e8-3e65ea7005fe.png https://user-images.githubusercontent.com/14288520/196505056-fd750650-f7ba-4f94-9a7e-1225e9a165c6.png

Functionality#

On each update it takes an incoming pool of Vertices and places them in a K-dimensional Tree. It will return the Edges it can make between those vertices pairs that satisfy the constraints imposed by the 4 parameters.

Inputs#

  • Verts, a pool of vertices to iterate through

Parameters#

Parameter

Type

Description

mindist

float

Minimum Distance to accept a pair

maxdist

float

Maximum Distance to accept a pair

maxNum

int

Max number of edges to associate with the incoming vertex

Skip

int

Skip first n found matches if possible

Fast Mode#

This mode requires Scipy dependency. It can be from 3 to 10 times faster but lacks of ‘maxNum’ and ‘Skip’ properties

https://user-images.githubusercontent.com/14288520/196498573-c789eeb7-6ddc-4aad-9fae-c6c7b9fd137f.png
https://user-images.githubusercontent.com/14288520/196499791-72a36288-0e0e-4e36-b97f-40c77b50d1f8.png https://user-images.githubusercontent.com/14288520/196500183-959e0a23-ed56-4640-b9a0-b3bc5e481d42.gif

Max Queries Mode#

This mode requires Scipy dependency. In this mode the maxNum property is used to determine how many points will be verified so it will produce less connections that the complete mode

https://user-images.githubusercontent.com/14288520/196501322-5df056cf-653b-46d2-899c-a1ba1b098f7e.png https://user-images.githubusercontent.com/14288520/196503091-0bef1667-1129-4e6b-bb09-d9013de2a9f1.gif

No Skip Mode#

This mode requires Scipy dependency. This is similar to the existing mode but the way the maximum connections is coded produces different results sorting the filter by minimum vertex index

https://user-images.githubusercontent.com/14288520/196502262-6ad08724-44e2-4210-895b-1b41721386a7.png

Outputs#

  • Edges, which can connect the pool of incoming Verts to each other.